Processing math: 100%

Publications

generated by bibbase.org
  2022 (9)
Heterogeneous Catalysis in Grammar School. Margraf, J. T.; Ulissi, Z. W.; Jung, Y.; and Reuter, K. The Journal of Physical Chemistry C, 126(6): 2931-2936. 2022.
Heterogeneous Catalysis in Grammar School [link]Paper   doi   link   bibtex   15 downloads  
How Do Graph Networks Generalize to Large and Diverse Molecular Systems?. Gasteiger, J.; Shuaibi, M.; Sriram, A.; Günnemann, S.; Ulissi, Z.; Zitnick, C. L.; and Das, A. arXiv preprint arXiv:2204.02782. 2022.
How Do Graph Networks Generalize to Large and Diverse Molecular Systems? [link]Paper   doi   link   bibtex   7 downloads  
FINETUNA: Fine-tuning Accelerated Molecular Simulations. Musielewicz, J.; Wang, X.; Tian, T.; and Ulissi, Z. arXiv preprint arXiv:2205.01223. 2022.
FINETUNA: Fine-tuning Accelerated Molecular Simulations [link]Paper   doi   link   bibtex   4 downloads  
Transfer Learning using Attentions across Atomic Systems with Graph Neural Networks (TAAG). Kolluru, A.; Shoghi, N.; Shuaibi, M.; Goyal, S.; Das, A.; Zitnick, L.; and Ulissi, Z. W The Journal of Chemical Physics, 0(ja): -. 2022.
Transfer Learning using Attentions across Atomic Systems with Graph Neural Networks (TAAG) [link]Paper   doi   link   bibtex   5 downloads  
Open Challenges in Developing Generalizable Large Scale Machine Learning Models for Catalyst Discovery. Kolluru, A.; Shuaibi, M.; Palizhati, A.; Shoghi, N.; Das, A.; Wood, B.; Zitnick, C. L.; Kitchin, J. R; and Ulissi, Z. W 2022.
Open Challenges in Developing Generalizable Large Scale Machine Learning Models for Catalyst Discovery [link]Paper   doi   link   bibtex   14 downloads  
Hydrogen Adsorption Energy Necessary but Not Sufficient for HER Catalysis: Connecting Machine-Learned Descriptors with High-Throughput Experimental Catalysis over Bimetallic Nanoparticles. Broderick, K.; Lopato, E.; Wander, B.; Bernhard, S.; Kitchin, J.; and Ulissi, Z. chemrxiv preprint. 6 2022.
doi   link   bibtex   18 downloads  
Spherical Channels for Modeling Atomic Interactions. Zitnick, C. L.; Das, A.; Kolluru, A.; Lan, J.; Shuaibi, M.; Sriram, A.; Ulissi, Z.; and Wood, B. . 6 2022.
Spherical Channels for Modeling Atomic Interactions [link]Paper   doi   link   bibtex   4 downloads  
Site Geometry as a Descriptor for Catalyst Selectivity in Intermetallics. Sharma, U.; Nguyen, A.; Janik, M. J.; and Ulissi, Z. Preprint available at SSRN 4145497. 2022.
link   bibtex  
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis. Tran, R.; Lan, J.; Shuaibi, M.; Goyal, S.; Wood, B. M.; Das, A.; Heras-Domingo, J.; Kolluru, A.; Rizvi, A.; Shoghi, N.; Sriram, A.; Ulissi, Z.; and Zitnick, C. L. arXiv. 2022.
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis [link]Paper   doi   link   bibtex   5 downloads  
  2021 (6)
Open Catalyst 2020 (OC20) Dataset and Community Challenges. Chanussot, L.; Das, A.; Goyal, S.; Lavril, T.; Shuaibi, M.; Riviere, M.; Tran, K.; Heras-Domingo, J.; Ho, C.; Hu, W.; Palizhati, A.; Sriram, A.; Wood, B.; Yoon, J.; Parikh, D.; Zitnick, C. L.; and Ulissi, Z. ACS Catalysis, 11(10): 6059-6072. 4 2021.
Open Catalyst 2020 (OC20) Dataset and Community Challenges [link]Paper   doi   link   bibtex   7 downloads  
Efficient Discovery of Active, Selective, and Stable Catalysts for Electrochemical H2O2 Synthesis through Active Motif Screening. Back, S.; Na, J.; and Ulissi, Z. W. ACS Catalysis, 11(5): 2483-2491. 2 2021.
Efficient Discovery of Active, Selective, and Stable Catalysts for Electrochemical H$_2$O$_2$ Synthesis through Active Motif Screening [link]Paper   doi   link   bibtex   5 downloads  
Computational catalyst discovery: Active classification through myopic multiscale sampling. Tran, K.; Neiswanger, W.; Broderick, K.; Xing, E.; Schneider, J.; and Ulissi, Z. W The Journal of Chemical Physics, 154(12): 124118. 2021.
link   bibtex  
Elimination of Multidrug-Resistant Bacteria by Transition Metal Dichalcogenides Encapsulated by Synthetic Single-Stranded DNA. Debnath, A.; Saha, S.; Li, D. O.; Chu, X. S.; Ulissi, Z. W.; Green, A. A.; and Wang, Q. H. ACS Applied Materials & Interfaces, 13(7): 8082-8094. 2021. PMID: 33570927
Elimination of Multidrug-Resistant Bacteria by Transition Metal Dichalcogenides Encapsulated by Synthetic Single-Stranded DNA [link]Paper   doi   link   bibtex   14 downloads  
Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy. Yoon, J.; Cao, Z.; Raju, R. K; Wang, Y.; Burnley, R.; Gellman, A. J; Farimani, A. B.; and Ulissi, Z. W Machine Learning: Science and Technology, 2(4): 045018. 2021.
link   bibtex  
Rotation Invariant Graph Neural Networks using Spin Convolutions. Shuaibi, M.; Kolluru, A.; Das, A.; Grover, A.; Sriram, A.; Ulissi, Z.; and Zitnick, C L. arXiv preprint arXiv:2106.09575. 2021.
Rotation Invariant Graph Neural Networks using Spin Convolutions [link]Paper   link   bibtex  
  2020 (11)
Capturing Structural Transitions in Surfactant Adsorption Isotherms at Solid/Solution Interfaces. Yoon, J.; and Ulissi, Z. W. Langmuir, 36(3): 819-826. 1 2020. PMID: 31891511
Capturing Structural Transitions in Surfactant Adsorption Isotherms at Solid/Solution Interfaces [link]Paper   doi   link   bibtex   29 downloads  
Methods for comparing uncertainty quantifications for material property predictions. Tran, K.; Neiswanger, W.; Yoon, J.; Zhang, Q.; Xing, E.; and Ulissi, Z. W Machine Learning: Science and Technology, 1(2): 025006. 5 2020.
link   bibtex   8 downloads  
Parallelized Screening of Characterized and DFT-Modeled Bimetallic Colloidal Cocatalysts for Photocatalytic Hydrogen Evolution. Lopato, E. M; Eikey, E. A; Simon, Z. C; Back, S.; Tran, K.; Lewis, J.; Kowalewski, J. F; Yazdi, S.; Kitchin, J. R; Ulissi, Z. W; and others ACS Catalysis, 10(7): 4244–4252. 3 2020.
link   bibtex  
Computational Notebooks in Chemical Engineering Curricula. Verrett, J.; Boukouvala, F.; Dowling, A.; Ulissi, Z.; and Zavala, V. Chemical Engineering Education, 54(3): 143–150. 7 2020.
link   bibtex  
Accelerated discovery of CO2 electrocatalysts using active machine learning. Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P.; Sun, S.; Voznyy, O.; Tan, C.; Askerka, M.; Che, F.; Liu, M.; Seifitokaldani, A.; Pang, Y.; Lo, S.; Ip, A.; Ulissi, Z.; and Sargent, E. H. Nature, 581(7807): 178–183. 5 2020.
Accelerated discovery of CO2 electrocatalysts using active machine learning [link]Paper   doi   link   bibtex   abstract   69 downloads  
Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening. Gu, G. H.; Noh, J.; Kim, S.; Back, S.; Ulissi, Z.; and Jung, Y. The Journal of Physical Chemistry Letters, 11: 3185–3191. 3 2020.
link   bibtex   6 downloads  
In silico discovery of active, stable, CO-tolerant and cost-effective electrocatalysts for hydrogen evolution and oxidation. Back, S.; Na, J.; Tran, K.; and Ulissi, Z. W. Phys. Chem. Chem. Phys., 22: 19454-19458. 8 2020.
In silico discovery of active, stable, CO-tolerant and cost-effective electrocatalysts for hydrogen evolution and oxidation [link]Paper   doi   link   bibtex   abstract   13 downloads  
Discovery of Acid-Stable Oxygen Evolution Catalysts: High-throughput Computational Screening of Equimolar Bimetallic Oxides. Back, S.; Tran, K.; and Ulissi, Z. W ACS Applied Materials & Interfaces, 12(34): 38256–38265. 8 2020.
link   bibtex   2 downloads  
Enabling robust offline active learning for machine learning potentials using simple physics-based priors. Shuaibi, M.; Sivakumar, S.; Chen, R. Q.; and Ulissi, Z. W Machine Learning: Science and Technology. 12 2020.
Enabling robust offline active learning for machine learning potentials using simple physics-based priors [link]Paper   link   bibtex   abstract   9 downloads  
Differentiable Optimization for the Prediction of Ground State Structures (DOGSS). Yoon, J.; and Ulissi, Z. W Physical Review Letters, 125(17): 173001. 2020.
link   bibtex  
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage. Zitnick, C L.; Chanussot, L.; Das, A.; Goyal, S.; Heras-Domingo, J.; Ho, C.; Hu, W.; Lavril, T.; Palizhati, A.; Riviere, M.; and others arXiv preprint arXiv:2010.09435. 2020.
link   bibtex   1 download  
  2019 (4)
Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts. Back, S.; Yoon, J.; Tian, N.; Zhong, W.; Tran, K.; and Ulissi, Z. W. The Journal of Physical Chemistry Letters, 10(15): 4401-4408. 7 2019.
Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts [link]Paper   doi   link   bibtex   23 downloads  
Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning. Back, S.; Tran, K.; and Ulissi, Z. W. ACS Catalysis, 0(0): 7651-7659. 7 2019.
Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning [link]Paper   doi   link   bibtex   11 downloads  
Towards Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks. Palizhati, A.; Zhong, W.; Tran, K.; Back, S.; and Ulissi, Z. W Journal of Chemical Information and Modeling. 2019.
doi   link   bibtex   10 downloads  
Optimization-Based Design of Active and Stable Nanostructured Surfaces. Hanselman, C. L.; Zhong, W.; Tran, K.; Ulissi, Z. W.; and Gounaris, C. E. The Journal of Physical Chemistry C, 123(48): 29209-29218. 2019.
Optimization-Based Design of Active and Stable Nanostructured Surfaces [link]Paper   doi   link   bibtex   3 downloads  
  2018 (4)
Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Tran, K.; and Ulissi, Z. W. Nature Catalysis, 1(9): 696. 9 2018.
doi   link   bibtex   39 downloads  
Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. Higgins, D.; Wette, M.; Gibbons, B. M.; Siahrostami, S.; Hahn, C.; Escudero-Escribano, M.; Garcia-Melchor, M.; Ulissi, Z. W.; Davis, R. C.; Mehta, A.; Clemens, B. M.; Nørskov, J. K.; and Jaramillo, T. F. ACS Applied Energy Materials. 5 2018.
Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes [link]Paper   doi   link   bibtex   2 downloads  
Theoretical Investigations of Transition Metal Surface Energies under Lattice Strain and CO Environment. Tang, M. T.; Ulissi, Z. W.; and Chan, K. The Journal of Physical Chemistry C, 122(26): 14481-14487. 2018.
Theoretical Investigations of Transition Metal Surface Energies under Lattice Strain and CO Environment [link]Paper   doi   link   bibtex   6 downloads  
Dynamic workflows for routine materials discovery in surface science. Tran, K.; Palizhati, A.; Back, S.; and Ulissi, Z. W Journal of Chemical Information and Modeling, 58(12): 2392–2400. 2018.
doi   link   bibtex   5 downloads  
  2017 (2)
To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; and Nørskov, J. K. Nature Communications, 8. March 2017.
doi   link   bibtex   6 downloads  
Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction. Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F.; Chan, K.; and Nørskov, J. K. ACS Catalysis, 7(10): 6600-6608. October 2017.
Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction [link]Paper   doi   link   bibtex   8 downloads  
  2016 (2)
Persistently Auxetic Materials: Engineering the Poisson Ratio of 2D Self-Avoiding Membranes under Conditions of Non-Zero Anisotropic Strain. Ulissi, Z. W; Govind Rajan, A.; and Strano, M. S ACS Nano, 10(8): 7542–7549. 2016.
doi   link   bibtex   2 downloads  
Automated Discovery and Construction of Surface Phase Diagrams using Machine Learning. Ulissi, Z. W; Singh, A. R; Tsai, C.; and Nørskov, J. K. The Journal of Physical Chemistry Letters. 2016.
doi   link   bibtex   abstract   4 downloads  
  2015 (2)
A Mathematical Formulation and Solution of the CoPhMoRe Inverse Problem for Helically Wrapping Polymer Corona Phases on Cylindrical Substrates. Bisker, G.; Ahn, J.; Kruss, S.; Ulissi, Z. W; Salem, D. P; and Strano, M. S The Journal of Physical Chemistry C. 2015.
doi   link   bibtex   abstract   2 downloads  
A 2D Equation-of-State Model for Corona Phase Molecular Recognition on Single-Walled Carbon Nanotube and Graphene Surfaces. Ulissi, Z. W.; Zhang, J.; Sresht, V.; Blankschtein, D.; and Strano, M. S. Langmuir, 31(1): 628–636. 2015.
doi   link   bibtex   3 downloads  
  2014 (4)
Deterministic modelling of carbon nanotube near-infrared solar cells. Bellisario, D. O.; Jain, R. M.; Ulissi, Z. W.; and Strano, M. S. Energy Environ. Sci., 7: 3769-3781. 2014.
Deterministic modelling of carbon nanotube near-infrared solar cells [link]Paper   doi   link   bibtex   4 downloads  
Quantitative Theory of Adsorptive Separation for the Electronic Sorting of Single-Walled Carbon Nanotubes. Jain, R. M.; Tvrdy, K.; Han, R.; Ulissi, Z. W.; and Strano, M. S. ACS Nano, 8(4): 3367-3379. 2014.
Quantitative Theory of Adsorptive Separation for the Electronic Sorting of Single-Walled Carbon Nanotubes [link]Paper   doi   link   bibtex   abstract   1 download  
Spatiotemporal Intracellular Nitric Oxide Signaling Captured using Internalized, Near Infrared Fluorescent Carbon Nanotube Nanosensors. Ulissi, Z. W.; Sen, F.; Gong, X.; Sen, S.; Iverson, N.; Boghossian, A. A.; Godoy, L.; Wogan, G.; Mukhopadhyay, D.; and Strano, M. S. Nano Letters, 14: 4887-4894. 2014.
Spatiotemporal Intracellular Nitric Oxide Signaling Captured using Internalized, Near Infrared Fluorescent Carbon Nanotube Nanosensors [link]Paper   doi   link   bibtex   abstract   1 download  
Low Dimensional Carbon Materials for Applications in Mass and Energy Transport. Wang, Q. H.; Bellisario, D. O.; Drahushuk, L. W.; Jain, R. M.; Kruss, S.; Landry, M. P.; Mahajan, S. G.; Shimizu, S. F. E.; Ulissi, Z. W.; and Strano, M. S. Chemistry of Materials, 26(1): 172-183. 1 2014.
doi   link   bibtex   abstract   1 download  
  2013 (6)
A Quantitative and Predictive Model of Electromigration-Induced Breakdown of Metal Nanowires. Bellisario, D. O.; Ulissi, Z. W.; and Strano, M. S. Journal of Physical Chemistry C, 117(23): 12373–12378. 6 2013.
doi   link   bibtex   abstract   2 downloads  
Charge Transfer at Junctions of a Single Layer of Graphene and a Metallic Single Walled Carbon Nanotube. Paulus, G. L. C.; Wang, Q. H.; Ulissi, Z. W.; McNicholas, T. P.; Vijayaraghavan, A.; Shih, C.; Jin, Z.; and Strano, M. S. Small, 9(11): 1954–1963. 6 2013.
doi   link   bibtex   abstract   2 downloads  
Stochastic Pore Blocking and Gating in PDMS-Glass Nanopores from Vapor-Liquid Phase Transitions. Shimizu, S.; Ellison, M.; Aziz, K.; Wang, Q. H.; Ulissi, Z. W.; Gunther, Z.; Bellisario, D.; and Strano, M. Journal of Physical Chemistry C, 117(19): 9641–9651. 5 2013.
doi   link   bibtex   abstract  
Control of nano and microchemical systems. Ulissi, Z. W.; Strano, M. S.; and Braatz, R. D. Computers & Chemical Engineering, 51(SI): 149-156. 4 2013.
doi   link   bibtex   abstract   1 download  
Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Choi, W.; Ulissi, Z. W; Shimizu, S. F.; Bellisario, D. O; Ellison, M. D; and Strano, M. S Nature Communications, 4: 2397. 2013.
doi   link   bibtex  
Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Zhang, J.; Landry, M. P.; Barone, P. W.; Kim, J.; Lin, S.; Ulissi, Z. W.; Lin, D.; Mu, B.; Boghossian, A. A.; Hilmer, A. J.; Rwei, A.; Hinckley, A. C.; Kruss, S.; Shandell, M. A.; Nair, N.; Blake, S.; Sen, F.; Sen, S.; Croy, R. G.; Li, D.; Yum, K.; Ahn, J.; Jin, H.; Heller, D. A.; Essigmann, J. M.; Blankschtein, D.; and Strano, M. S. Nature Nanotechnology, 8(12): 959–968. 12 2013.
doi   link   bibtex   abstract   1 download  
  2012 (2)
Modelling and development of photoelectrochemical reactor for H-2 production. Carver, C.; Ulissi, Z. W.; Ong, C. K.; Dennison, S.; Kelsall, G. H.; and Hellgardt, K. International Journal of Hydrogen Energy, 37(3): 2911–2923. 2 2012.
doi   link   bibtex   abstract  
Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy. Sen, F.; Boghossian, A. A.; Sen, S.; Ulissi, Z. W.; Zhang, J.; and Strano, M. S. ACS Nano, 6(12): 10632–10645. 12 2012.
doi   link   bibtex   abstract  
  2011 (4)
The chemical dynamics of nanosensors capable of single-molecule detection. Boghossian, A. A.; Zhang, J.; Le Floch-Yin, F. T.; Ulissi, Z. W.; Bojo, P.; Han, J.; Kim, J.; Arkalgud, J. R.; Reuel, N. F.; Braatz, R. D.; and Strano, M. S. The Journal of Chemical Physics, 135(8): 084124. 2011.
The chemical dynamics of nanosensors capable of single-molecule detection [link]Paper   doi   link   bibtex  
Effect of multiscale model uncertainty on identification of optimal catalyst properties. Ulissi, Z. W.; Prasad, V.; and Vlachos, D. Journal of Catalysis, 281(2): 339–344. 7 2011.
doi   link   bibtex   abstract  
Carbon Nanotubes as Molecular Conduits: Advances and Challenges for Transport through Isolated Sub-2 nm Pores. Ulissi, Z. W.; Shimizu, S.; Lee, C. Y.; and Strano, M. S. Journal of Physical Chemistry Letters, 2(22): 2892–2896. 11 2011.
doi   link   bibtex   abstract  
Applicability of Birth-Death Markov Modeling for Single-Molecule Counting Using Single-Walled Carbon Nanotube Fluorescent Sensor Arrays. Ulissi, Z. W.; Zhang, J.; Boghossian, A. A.; Reuel, N. F.; Shimizu, S. F. E.; Braatz, R. D.; and Strano, M. S. Journal of Physical Chemistry Letters, 2(14): 1690–1694. 7 2011.
doi   link   bibtex   abstract  
  2010 (1)
High throughput multiscale modeling for design of experiments, catalysts, and reactors: Application to hydrogen production from ammonia. Prasad, V.; Karim, A.; Ulissi, Z. W.; Zagrobelny, M.; and Vlachos, D. Chemical Engineering Science, 65(1, SI): 240–246. 1 2010.
doi   link   bibtex   abstract   1 download  
  2006 (1)
Visualization of biological texture using correlation coefficient images. Sviridov, A. P; Ulissi, Z. W.; Chernomordik, V. V; Hassan, M.; and Gandjbakhche, A. H Journal of Biomedical Optics, 11(6): 060504. 2006.
doi   link   bibtex  
  undefined (1)
. . .
link   bibtex   9 downloads