Eigenvalue and Eigenvectors
Contents
Eigenvalue and Eigenvectors#
Recap from last class#
System of linear equations represented as:
Non-homogeneous system if \(\vec{b}\neq\vec{0}\)
If \(\det(\arr{A})\neq0\) (e.g. \(\arr{A}\) is invertible), then a unique solution exists.
Homogeneous system if \(\vec{b}=\vec{0}\)
If \(\det(\arr{A})\neq0 \rightarrow\) has only the trivial solution \(\vec{x} = \vec{0}\)
If \(\det(\arr{A})=0 \rightarrow\) also has a series of nontrivial solutions
Intro to eigenvalues and eigenvectors#
For engineering applications, eigenvalue problems are among the most important problems concerning matrices.
For example, wherever there are vibrations, there are eigenvalues, which are the natural frequencies of the vibration.
If you’ve ever tuned a guitar, you’ve solved an eigenvalue problem!
Google’s page-rank algorithm for determining which pages are important is also built on eigenvectors of a very specific matrix.
Quantum mechanics
Face detection
For the following expression:
\(\vec{x}=0\) is always a solution (trivial)
If \(\vec{x}\neq0\) exists, then \(\lambda=\) eigenvalue of \(\arr{A}\) and \(\vec{x}=\) eigenvector of \(\arr{A}\).
Often, there are are many eigenvectors, which together with the \(\vec{0}\) vector, form the eigenspace of \(\arr{A}\).
How do we find \(\lambda\)’s and associated \(\vec{x}\)’s? What do they mean?
To find \(\lambda\), rearrange our key equation:
\(\arr{A}\) is matrix and \(\lambda\) a scalar, but we can factor out \(\vec{x}\) using \(\arr{I}\).
This is a homogeneous system. We just learned that if the determinant of the matrix on the LHS is zero, then there is a non-trivial solution that is actually a series.
\(\therefore\) if \(|\arr{A} - \lambda\arr{I}|=0\),
then there is a non trivial value of \(\vec{x}\) and a set of \(\lambda\), \(\vec{x}\) that satisfy \(\arr{A}\vec{x}=\lambda\vec{x}\)
Example for a 2x2 matrix#
\(\arr{A} = \begin{bmatrix}-5 & 0\\ 1 & 2\end{bmatrix}\)
We want
which is the “characteristic equation” of \(\arr{A}\).
Equation is satisfied by \(\lambda_1=2\); \(\lambda_2=-5\)
Now, there is one eigenvector assiciated with each eigenvalue: \(\vec{x}^{(1)}\) and \(\vec{x}^{(2)}\)
Let’s start with \(\lambda_1=2\):
\(\therefore x_1^{(1)} =0\) and \(x_1^{(2)}\) can be anything but zero since solution is non-trivial.
\(\therefore \vec{x}^{(1)} = \begin{bmatrix}0\\\alpha\end{bmatrix}\) where \(\alpha\neq 0\). This \(\vec{x}^{(1)}\) is married to \(\lambda_1=2\).
Now, \(\lambda_2=-5:\)
Which gives \(0=0\) and
\(\therefore \vec{x}^{(2)} = \begin{bmatrix}-7\beta\\ \beta \end{bmatrix}\), where \(\beta \neq 0\). This \(\vec{x}^{(2)}\) is married to \(\lambda_2 = -5\)
Make sure to check that \(\lambda + \vec{x}\) ‘s satisfy the original equation\
\
\
Eigenspaces are: \begin{array}{}
\end{array}
The basis of two non zero eignspaces are \(\begin{bmatrix} 0 \\ 1\end{bmatrix}\) and \(\begin{bmatrix} -7 \\ 1\end{bmatrix}\) respectively.
Recap#
For any n\(\times\)n matrix with \(\text{rank}(\arr{A})=n\), you’ll get an \(n^{(th)}\) degree polynomial to solve in \(\lambda\) from \(|\arr{A} - \lambda \arr{I}| = 0\).
An n\(\times\)n matrix has at least one \(\lambda\) and \(n\) distinct \(\lambda\) ‘s.
Recap to solving eigenvalue problems:
Set up \(|\arr{A} - \lambda \arr{I}| = 0\)
Determine the characteristic equation to solve for \(\lambda\)
For each \(\lambda\), determine \(\vec{x}\)
Example for a 3x3#
Let’s try a larger example:
\(\arr{A} = \begin{bmatrix}6&10&6 \\ 0&8&12 \\ 0&0&2 \end{bmatrix} \rightarrow\) we want \(\lambda\), \(\vec{x}\) such that \(\arr{A} \vec{x} = \lambda \vec{x}\)
We choose to work with column 1
We don’t really need to go further unless we want expanded characteristic equation.
\(\therefore\) eigenvalues are: \begin{array}{} \lambda_1=6, & \lambda_2=8, & \lambda_3=3 \end{array} We can get maximum of 3 eigenvalues since \(n=3\)
Now, find \(\vec{x}^{(i)}\) for each \(\lambda_i\) using \((\arr{A}- \lambda_i \arr{I})\vec{x}^{(i)} = \vec{0}\)
For \(\lambda_1=6\):
(31)#\[\begin{align} \begin{bmatrix} 0&10&6 \\ 0&2&12 \\ 0&0&-4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{align}\]Which gives:
(32)#\[\begin{align} 10x_2 + 6x_3 = 0;\\ 2 x_2 + 12 x_3 = 0;\\ -4x_3 = 0 \end{align}\](33)#\[\begin{align} \implies x_3 = x_2 = 0 &&\text{and}&& \text{$x_1=$arbitrary} \end{align}\](34)#\[\begin{align} \vec{x}^{(1)} = \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} & \text{, where $\alpha\neq0$} \end{align}\]or the basis vector \(\vec{x}^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\) (really a series of solutions)
For \(\lambda_2=8\):
(35)#\[\begin{align} \begin{bmatrix} -2&10&6 \\ 0&0&12 \\ 0&0&-6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{align}\]Which gives:
(36)#\[\begin{align} -2x_1 + 10x_2 + 6x_3= 0;\\ 12x_3 = 0;\\ -6x_3 = 0 \end{align}\](37)#\[\begin{align} \implies x_3 = 0, && x_1 = 5x_2 + 3x_3 &&\text{and}&& \text{$x_2=$arbitrary} \end{align}\](38)#\[\begin{align} \vec{x}^{(2)} = \begin{bmatrix} 5\beta \\ \beta \\ 0 \end{bmatrix}& \text{, $\beta\neq0$} \end{align}\]or the basis vector \(\vec{x}^{(2)} = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}\)
For \(\lambda_3=2\):
(39)#\[\begin{align} \begin{bmatrix} 4&10&6 \\ 0&6&12 \\ 0&0&0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{align}\]Which gives:
(40)#\[\begin{align} 4x_1 + 10x_2 + 6x_3 = 0;\\ 6x_2 + 12x_3 = 0;\\ 0 = 0 \end{align}\](41)#\[\begin{align} \implies x_2 &= -2 x_3;\\ x_1 &= -\frac{10}{4}(-2x_3) - \frac{6}{4}x_3 \\ &= 5x_3 -\frac{3}{2}x_3\\ x_1 &= \frac{7}{2}x_3 \end{align}\](42)#\[\begin{align} \vec{x}^{(3)} = \begin{bmatrix} \frac{7}{2}\delta \\ -2\delta \\ \delta \end{bmatrix}& \text{, $\delta\neq0$} \end{align}\]or the basis vector \(\vec{x}^{(3)} = \begin{bmatrix} \frac{7}{2} \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ -4 \\ 2 \end{bmatrix}\)
Eigenspace corresponding to \(\arr{A}\) : \begin{array}{} 6, \begin{bmatrix} 1\0\0 \end{bmatrix} ; & 8,\begin{bmatrix} 5\1\0 \end{bmatrix}; & 2, \begin{bmatrix} 7-4\2\end{bmatrix} ; & \vec{x}=\vec{0} \end{array}
Example with a double root#
Consider \(\arr{A}=\begin{bmatrix}-2&2&-3\\2&1&-6\\-1&-2&0\end{bmatrix}\)
Find the characteristic equation#
Calculating this, we get \(\lambda^3+\lambda^2-21\lambda-45=0\). No way for us to calculate this easily by hand!
Using python, we find the roots are \(\lambda_1=5,\lambda_2=\lambda_3=-3\). Note the double root!
Find the eigenvector for \(\lambda_1=5\), corresponding to \((\arr{A}-5\arr{I})\vec{x}^{(1)}=\vec{0}\)#
We need to use Gauss Elimination to solve this:
\(R_1=R_2/2, R_2=R_1\)
\(R_2=R_2+7R_1\), \(R_3=R_3+R_1\)
\(R_3=-R_3/4, R_2=-R_2/12\)
\(R_3=R_3-R_2, R_1=R_1+2R_2\)
So \(x_1+x_3=0\) and \(x_2+2x_3=0\). Let’s let \(x_3=1\). That gives us \(x_1=-\alpha\) and \(x_2=-2\alpha\), so
We can do a quick check that this is correct:
Eigenvector for \(\lambda_2=\lambda_3=-3\)#
For these, we get:
After Gauss elimination we get:
This tells us that \(x_1+2x_2-3x_3=0\). This has one equation and three unknowns! So, let’s write our system as a system of three equations:
We can write this as three linearly independent vectors:
where \(x_2\) and \(x_3\) are arbitrary. This gives us two eigenvectors:
So, the fulll eigenspace of \(\arr{A}\) is
Recap of the characteristic equation#
\(|\arr{A}-\lambda \arr{I}|=0\) gives us the characteristic equation of \(\arr{A}\), which is a polynomial. An nth order polynomial has several solution possibilities:
\(n\) distinct, real roots
redundant, real roots
complex (i.e. imaginary) roots
Consider the case of complex roots:#
\( \arr{A} = \begin{bmatrix} 1&2 \\ -2&1 \end{bmatrix} \)
Find \(\lambda\) ‘s by solving \(|\arr{A} - \lambda \vec{x}|\) = 0#
Now find eigenvectors:#
Find \(\vec{x}^{(1)}\) by solving \((\arr{A} - \lambda_1 \arr{I}) \vec{x} = \vec{0}\)
\(R_1 = \frac{1}{2}R_1\) and \(R_2=\frac{1}{2}iR_2\):
* $R_2 = R_2 - R_1$:
or,
Find \(\vec{x}^{(2)}\) by solving \((\arr{A} - \lambda_2 \arr{I}) \vec{x} = \vec{0}\)
\(R_1 = \frac{1}{2}R_1\) and \(R_2=\frac{1}{2}iR_2\):
\(R_2 = R_2 + R_1\):
or,
\(\therefore\) Eigenspace of \(A\) is