\[\newcommand{\arr}[1]{\underline{\underline{#1}}}\]
\[\newcommand{\vec}[1]{\underline{#1}}\]
\[\require{mhchem}\]

Coupled Differential Equations Continued!#

Recap for coupled differential equations:#

Coupled homogeneous 1st order ODEs:

  • \(\vec{y'} = \arr{A} \vec{y}\) where \(\vec{y}\) is a vector of unknown functions.

  • \(\vec{y} = [y_1, y_2, y_3, ... y_n]^T\) represents an \(n^{th}\) order system with \(n\times n \ \arr{A}\)

  • We assumed that \(\vec{x}e^{\lambda t}\) was a solution, then showed that it was.

  • We proved that the eigenvalues and eigenvectors of \(\arr{A}\) yield the solution

(403)#\[\begin{align} \vec{y} = c_1\vec{x}^{(1)}e^{\lambda_1t} + c_2\vec{x}^{(2)}e^{\lambda_2t} + ... + c_n\vec{x}^{(n)}e^{\lambda_n t} \end{align}\]
  • In the last class, we looked at examples of coupled \(1^\circ\) ODEs with real, distict eigenvalues.

Now let’s look at complex eigenvalues#

\(\underline{\text{Ex}}\):

(404)#\[\begin{align} y_1' &= 2y_2\\ y_2' &= -2y_1\\ \begin{bmatrix}y_1' \\ y_2' \end{bmatrix} &= \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\\ \implies \vec{y}' &= \arr{A}\vec{y} \text{ where } \arr{A} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \end{align}\]

Can you guess what the solutions are going to look like?

  1. Find eigenvalues of \(\arr{A}\):

(405)#\[\begin{align} \det(\arr{A} - \lambda\arr{I}) = 0\\ \left| \begin{array}{}0 - \lambda & 2 \\ -2 & 0-\lambda \end{array}\right| = 0 = \lambda^2 + 4\\ \lambda = \pm 2i \rightarrow \lambda_1 = 2i, \ \lambda_2 = -2i \end{align}\]
  1. Find eigenvectors
    Set \((\arr{A} - \lambda\arr{I})\vec{x}^{(1)} = \vec{0}\)

  • For \(\lambda_1 = 2i\)

(406)#\[\begin{align} \begin{bmatrix} -2i & 2 \\ -2 & -2i\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\\ \implies -2ix_1 + 2x_2 = 0\\ [-2x_1 - 2ix_2 = 0]i && \text{(redundant)} \rightarrow -2ix_1 + 2x_2 = 0\\ ix_1 = x_2 \implies \vec{x}^{(1)} = \begin{bmatrix} 1 \\ i \end{bmatrix} \end{align}\]
  • For \(\lambda_2 = -2i\)

(407)#\[\begin{align} \begin{bmatrix} 2i & 2 \\ -2 & 2i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\\ \implies 2ix_1 + 2x_2 = 0\\ -ix_1 = x_2 \implies \vec{x}^{(2)} = \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} i \\ 1 \end{bmatrix} \end{align}\]

\(\therefore\) General solution is:

(408)#\[\begin{align} \vec{y} = c_1 \begin{bmatrix} 1 \\ i \end{bmatrix}e^{2it} + c_2 \begin{bmatrix} 1 \\ -i \end{bmatrix} e^{-2it} \end{align}\]

Not very useful since it’s imaginary

  • We will again use Euler’s Formula:

(409)#\[\begin{align} e^{2it} &= \cos(2t) + i\sin(2t)\\ e^{-2it} &= \cos(-2t) + i\sin(-2t)\\ &= \cos(2t) - i\sin(2t) \end{align}\]
  • Looking at part of the solution:

(410)#\[\begin{align} \begin{bmatrix} 1 \\ i \end{bmatrix} e^{2it} &= \begin{bmatrix} 1 \\ i \end{bmatrix} (\cos 2t + i\sin 2t)\\ &= \begin{bmatrix} \cos 2t + i\sin 2t \\ i\cos 2t - \sin 2t \end{bmatrix}\\ &= \begin{bmatrix} \cos 2t \\ -\sin 2t \end{bmatrix} + i \begin{bmatrix} \sin 2t \\ \cos 2t\end{bmatrix}\\ &= \vec{a} + i\vec{b}\\ \begin{bmatrix} 1 \\ -i \end{bmatrix} e^{-2it} &= \begin{bmatrix} 1 \\ -i \end{bmatrix} (\cos 2t - i\sin 2t)\\ &= \begin{bmatrix} \cos 2t - i\sin 2t \\ -i\cos 2t - \sin 2t \end{bmatrix}\\ &= \begin{bmatrix} \cos 2t \\ -\sin 2t \end{bmatrix} - i \begin{bmatrix} \sin 2t \\ \cos 2t\end{bmatrix}\\ &= \vec{a} - i\vec{b} \end{align}\]
  • Can we form real solutions from the imaginary solutions?
    \(\implies\) Let’s try multiplying sum of imaginary solutions by \(\frac{1}{2}\)

(411)#\[\begin{align} \frac{1}{2} \left\{\begin{bmatrix} 1 \\ i \end{bmatrix} e^{2it} + \begin{bmatrix} 1 \\ -i\end{bmatrix}e^{-2it} \right\} &= \frac{1}{2}(\vec{a} + i\vec{b} + \vec{a} - i\vec{b})\\ &= \frac{1}{2}(2\vec{a})\\ &= \vec{a} && \rightarrow\text{the sum of two linearly independent solutions is also a solution}\\ -\frac{i}{2} \left\{\begin{bmatrix} 1 \\ i \end{bmatrix} e^{2it} - \begin{bmatrix} 1 \\ -i\end{bmatrix}e^{-2it} \right\} &= -\frac{i}{2}(\vec{a} + i\vec{b} - \vec{a} + i\vec{b})\\ &= -\frac{i}{2}\cdot 2i\vec{b}\\ &= \vec{b} && \rightarrow\text{the difference of two linearly independent solutions is also a solution} \end{align}\]

\(\therefore \vec{y} = c_1 \vec{a} + c_2 \vec{b}\) is a real representation of the general solution

(412)#\[\begin{align} \vec{y} = c_1 \begin{bmatrix} \cos 2t \\ -\sin 2t \end{bmatrix} + c_2 \begin{bmatrix} \sin 2t \\ \cos 2t \end{bmatrix} \end{align}\]

OR

(413)#\[\begin{align} y_1(t) &= c_1 \cos 2t + c_2 \sin 2t\\ y_2(t) &= -c_1\sin 2t + c_2\cos 2t \end{align}\]

General solution for complex eigenvalues#

We don’t have to go through all of this work every time!

  • For pairs of complex conjugate eigenvalues \(\lambda\pm \omega i\) with eigenvectors \(\vec{x}=\vec{a}\pm \vec{b}i\) (the eigenvectors are also complex conjugates), the form will be:

(414)#\[\begin{align} \vec{y}=e^\lambda t\left[c_1(\vec{a}\cos\omega t-\vec{b}\sin \omega t)+c_2(\vec{a}\sin\omega t+\vec{b}\cos \omega t)\right] \end{align}\]
  • To be clear, here \(\vec{a}\) is the real part of the eigenvector, and \(\vec{b}\) is the imaginary part of the eigenvector.

  • For the above example (\(\lambda=\pm 2i\), eigenvector \(\vec{x}=[1,\pm i]\), this yields

(415)#\[\begin{align} \vec{y}&=e^0 t\left[c_1\left(\begin{bmatrix}1\\0\end{bmatrix}\cos2 t-\begin{bmatrix}0\\1\end{bmatrix}\sin 2 t\right)+c_2\left(\begin{bmatrix}1\\0\end{bmatrix}\sin2 t+\begin{bmatrix}0\\1\end{bmatrix}\cos 2 t\right)\right]\\ y_1&=c_1\cos2t +c_2 \sin2t\\ y_2&=-c_1\sin 2t+c_2\cos2t \end{align}\]

Numerical solution to this example#

Remember, when we solve this numerically, we also need initial conditions. So let’s say that \(y_1(t=0)=2\) and \(y_2(t=0)=0.5\)

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

A = np.array([[0, 2],
              [-2,0]])

def linear_homogeneous_diffeq(t, y):
  return A@y

def linear_diffeq(t, y):
  return [2*y[1],
          -2*y[0]]


tspan = [0, 10]
y0 = [2, 0.5]
t_eval = np.linspace(0,10,100)

sol = solve_ivp(linear_homogeneous_diffeq, tspan, y0, t_eval=t_eval)

plt.plot(sol.t, sol.y.T,'o-')
plt.xlabel('Time t')
plt.ylabel('y')
Text(0, 0.5, 'y')
../../_images/17-coupled-ode-continued_7_1.png

More than two coupled linear equations:#

Very easy to add more to our systems

\(\underline{\text{Ex}}\):

(416)#\[\begin{align} y_1' &= 3y_1 + 5y_2 + 3y_3\\ y_2' &= 4y_2 + 6y_3\\ y_3' &= y_3 \end{align}\]
  • Note that equation 3 isn’t coupled, so in this case we can either solve that separately and plug into first two, or treat as 3D system:

(417)#\[\begin{align} \vec{y}' = \arr{A}\vec{y} \ \text{ where } \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \text{ and } \arr{A} = \begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix} \end{align}\]
  • The solution will be of the form:

(418)#\[\begin{align} \vec{y} = c_1 \vec{x}^{(1)}e^{\lambda_1 t} + c_2 \vec{x}^{(2)}e^{\lambda_2 t} + c_3 \vec{x}^{(3)}e^{\lambda_3 t} \end{align}\]

where \(\lambda\)’s are the eigenvalues of \(\arr{A}\) and \(\vec{x}^{(i)}\)’s are the eigenvectors of \(\arr{A}\)

(419)#\[\begin{align} \arr{A} &= \begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix} \\ \implies \lambda_1 &= 3,\ \vec{x}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T\\ \lambda_2 &= 4,\ \vec{x}^{(2)} = \begin{bmatrix} 5 & 1 & 0 \end{bmatrix}^T\\ \lambda_3 &= 1,\ \vec{x}^{(3)} = \begin{bmatrix} 7 & -4 & 2 \end{bmatrix}^T \end{align}\]
(420)#\[\begin{align} \therefore \vec{y} = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix} e^{4t} + c_3 \begin{bmatrix} 7 \\ -4 \\ 2 \end{bmatrix} e^{t} \end{align}\]

OR:

(421)#\[\begin{align} y_1(t) &= c_1 e^{3t} + 5c_2e^{4t} + 7c_3e^t\\ y_2(t) &= c_2e^{4t} - 4c_3e^t\\ y_3(t) &= 2c_3e^t \end{align}\]
  • It’s easy to check the solution to \(y_3\) as it can be decoupled and is a solution to \(y_3' = y_3\).

  • Will need three initial conditions to find particular solution.

import numpy as np

# Quick numerical check to convince us that the eigenvalues/eigenvectors 
# are correct above
A = np.array([[3,5,3],
              [0,4,6],
              [0,0,1]])

eigval,eigvec = np.linalg.eig(A)

print(eigval)
print(eigvec[:,2])
print(eigvec[:,2]*7/eigvec[0,2])
[3. 4. 1.]
[ 0.84270097 -0.48154341  0.24077171]
[ 7. -4.  2.]

Numerical solution#

We need three initial conditions now. Let’s say \(y_1(0)=4, y_2(0)=2, y_3(0)=6\). Almost no changes from the above code

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

A = np.array([[3, 5, 3],
              [0, 4, 6],
              [0, 0, 1]])

def linear_homogeneous_diffeq(t, y):
  return A@y

tspan = [0, 1]
y0 = [4,2,6]
t_eval = np.linspace(0,1,100)

sol = solve_ivp(linear_homogeneous_diffeq, tspan, y0, t_eval=t_eval)

plt.plot(sol.t, sol.y.T,'o-')
plt.xlabel('Time t')
plt.ylabel('y')
Text(0, 0.5, 'y')
../../_images/17-coupled-ode-continued_11_1.png

How do we handle non-homogeneous systems#

\(\rightarrow\) Same idea as single equations

(422)#\[\begin{align} y_1' &= -3y_1 + y_2 + 3\cos t\\ y_2' &= y_1 -3y_2 -2\cos t -3\sin t\\ \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} &= \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} 3\cos t \\ -2\cos t - 3\sin t \end{bmatrix}\\ \vec{y}' &= \arr{A}\vec{y} + \vec{g}(t) \text{ where $\vec{g}$ is a vector with no dependence on $\vec{y}$} \end{align}\]
  1. Solve homogeneous system. From \(\arr{A}\):

(423)#\[\begin{align} \lambda_1 = -4 && \vec{x}^{(1)} = \begin{bmatrix} -1 & 1 \end{bmatrix}^T\\ \lambda_2 = -2 && \vec{x}^{(2)} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \end{align}\]
(424)#\[\begin{align} \therefore \vec{y}_H (t) = c_1\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-4t} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-2t} \end{align}\]
  1. Solve non-homogeneous part

  • Now, the particular solution \(\vec{y}_P\) is a vector

  • For this example use MoUC. Choose \(\vec{y}_P\) based on \(\vec{g} = \begin{bmatrix} 3\cos t \\ -2\cos t -3\sin t \end{bmatrix}\)

(425)#\[\begin{align} \vec{y}_P = \vec{u}\sin t + \vec{v}\cos t \end{align}\]

where \(\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\) and \(\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\) are the vectors of undetermined coefficients.
Then, \(\vec{y}_P' = \vec{u} \cos t - \vec{v}\sin t\)

  • Plug in expressions for \(\vec{y}_P\) and \(\vec{y}_P'\) into \(\vec{y}_P' = \arr{A}\vec{y}_P + \vec{g}\)

(426)#\[\begin{align} \vec{u}\cos t - \vec{v}\sin t = \arr{A}(\vec{u}\sin t + \vec{v}\cos t) + \vec{g}\\ (\vec{u} - \arr{A}\vec{v})\cos t - (\arr{A}\vec{u} + \vec{v})\sin t = \vec{g} \end{align}\]
  • Match coefficients:

    • cos(t) terms (two equations):

(427)#\[\begin{align} \vec{u} - \arr{A}\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \end{align}\]
* sin(t) terms (two equations):
\begin{align}
-\arr{A} \vec{u} -\vec{v} = \begin{bmatrix} 0 \\ -3 \end{bmatrix} 
\end{align}
  • Solve system:
    From first equation: \(\vec{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} + \arr{A}\vec{v}\)
    Plug into second equation:

(428)#\[\begin{align} -\arr{A}\left(\begin{bmatrix} 3 \\ -2 \end{bmatrix} + \arr{A}\vec{v} \right) - \vec{v} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}\\ \text{simplifies to }\ \begin{bmatrix} -11 & 6 \\ 6 & -11 \end{bmatrix} \begin{bmatrix}v_1 \\ v_2\end{bmatrix} = \begin{bmatrix} -11 \\ 6 \end{bmatrix}\\ \left[\begin{array}{ll|l}-11 & 6 & -11 \\ 6 & -11 & 6\end{array}\right] \text{ G.E} \rightarrow \left[\begin{array}{ll|l} 1&0&1 \\ 0&1&0\end{array} \right]\\ \therefore \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \vec{u} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} + \arr{A}\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}\\ \therefore \vec{y}_P = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \sin t + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos t \end{align}\]

and

(429)#\[\begin{align} \vec{y}(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-4t} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-2t} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \sin t + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos t \end{align}\]

Notice that this says the initial conditions don’t matter after a while!!

Numerical solutions#

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

A = np.array([[-3, 1],
              [1,-3]])

def linear_nonhomogeneous_diffeq(t, y):
  return A@y + [3*np.cos(t),
                -2*np.cos(t)-3*np.sin(t)]

tspan = [0, 20]
y0 = [-100, 400000]
t_eval = np.linspace(0,20,100)

sol = solve_ivp(linear_nonhomogeneous_diffeq, tspan, y0, t_eval=t_eval)

plt.plot(sol.t, sol.y.T,'o-')
plt.xlabel('Time t')
plt.ylabel('y')
plt.ylim([-2,2])
(-2.0, 2.0)
../../_images/17-coupled-ode-continued_14_1.png

Non-homogeneous system - VOP Method#

  • Find the general solution to \(\vec{y}' = \begin{bmatrix}-2 & 1 \\ 1 & -2 \end{bmatrix}\vec{y} + \begin{bmatrix} 2e^{-t} \\ 3t \end{bmatrix}\)
    same as:

(430)#\[\begin{align} y_1' &= -2y_1 + y_2 + 2e^{-t}\\ y_2' &= y_1 -2y_2 + 3t\\ \vec{y}' &= \arr{A}\vec{y} + \vec{g}(t) \end{align}\]
  1. Solve homogeneous system
    from \(\arr{A} \rightarrow |\arr{A}-\lambda\arr{I}|=0\)

(431)#\[\begin{align} \left|\begin{array}{} -2-\lambda & 1 \\ 1 & -2-\lambda \end{array}\right| = 0 & = (-2-\lambda)(-2-\lambda) -1\\ &= +4 + 2\lambda + 2 \lambda + \lambda^2 - 1\\ &= \lambda^2 + 4\lambda + 3 = (\lambda + 3)(\lambda + 1)\\ \lambda_1 &= -3 ; \ \lambda_2 = -1 \end{align}\]

then \((\arr{A} - \lambda\arr{I})\vec{x} = \vec{0}\)
For \(\lambda_1=-3\)

(432)#\[\begin{align} \left[\begin{array}{ll|l} 1 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right] \rightarrow x_1 + x_2 = 0 \implies x_1 = -x_2 \implies \vec{x}^{(1)} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{align}\]

For \(\lambda_2=-1\)

(433)#\[\begin{align} \left[\begin{array}{ll|l} -1 & 1 & 0 \\ 1 & -1 & 0 \end{array} \right] \rightarrow -x_1 + x_2 = 0 \implies x_1 = x_2 \implies \vec{x}^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{align}\]

Then,

(434)#\[\begin{align} \vec{y}_H(t) = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-3t} + c_2\begin{bmatrix} 1 \\ 1 \end{bmatrix}e^{-t} \end{align}\]
  1. Solve non-homogeneous part using Variation of Parameters

  • Write the homogeneous solution as:

(435)#\[\begin{align} \vec{y}_H(t) &= \begin{bmatrix} y_1^{(1)} & y_1^{(2)} \\ y_2^{(1)} & y_2^{(2)} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \arr{Y}(t)\vec{c}\ \text{ where $\arr{Y}(t)$ is the $``$fundamental matrix"}\\ &= \begin{bmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t}\end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \end{align}\]
  • Just like with one dimensional case, we will form a particular solution by “replacing” the arbitrary constants of the homogeneous solution with an unknown function of \(t\), but this time with a vector. Assume \(\vec{y}_P(t) = \arr{Y}(t)\vec{u}(t)\)

  • We will determine \(\vec{u}(t)\) by substituting \(\vec{y}_P(t)\) into the original system
    \(\rightarrow\) let’s derive in general terms

(436)#\[\begin{align} \vec{y}' &= \arr{A} \vec{y} + \vec{g} \\ \vec{y}_P' &= \arr{A}\vec{y}_P + \vec{g}\\ (\arr{Y}\vec{u})' &= \arr{A} \arr{Y}\vec{u} + \vec{g}\\ \arr{Y}'\vec{u} &+ \arr{Y}\vec{u}' = \arr{A}\arr{Y}\vec{u} + \vec{g} \end{align}\]

\(\implies\) because \(\arr{Y}\) is a solution to the homogeneous system, we know it satifies \(\arr{Y}' = \arr{A}\arr{Y}\rightarrow\) substitute this in

(437)#\[\begin{align} \arr{A}\arr{Y}\vec{u} +\arr{Y}\vec{u}' &= \arr{A}\arr{Y}\vec{u} + \vec{g}\\ \arr{Y}^{-1}(\arr{Y}\vec{u}' &= \vec{g}) \end{align}\]

\(\rightarrow\) can multiply with inverse. We know \(\arr{Y}\) is non singular because \(\det(\arr{Y})=\) Wronskian which is non-zero for a basis

(438)#\[\begin{align} \vec{u}' &= \arr{Y}^{-1} \vec{g}\\ \vec{u}(t) &= \int \arr{Y}^{-1}(t) \vec{g}(t)dt + \vec{c} && \rightarrow \text{each element is integrated separately} \end{align}\]

and

(439)#\[\begin{align} \vec{y}_P(t) &= \arr{Y}(t)\vec{u}(t)\\ &= \arr{Y}(t) \int \arr{Y}^{-1}(t)\vec{g}(t) dt \end{align}\]

and

(440)#\[\begin{align} \vec{y}(t) &= \vec{y}_H + \vec{y}_P\\ \vec{y}(t) &= \arr{Y}(t)\vec{c} + \arr{Y}(t) \int \arr{Y}^{-1}(t)\vec{g}(t) dt \end{align}\]
  • Now for our example:
    we need \(\arr{Y}^{-1}(t)\). Can find using matrix property for a 2x2 matrix:

(441)#\[\begin{align} \arr{A}^{-1} = \frac{1}{\det \arr{A}}\begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \end{align}\]

then

(442)#\[\begin{align} \arr{Y}^{-1} &= \frac{1}{e^{-4t} + e^{-4t}} \begin{bmatrix} e^{-t} & -e^{-t} \\ e^{-3t} & e^{-3t} \end{bmatrix}\\ &=\frac{1}{2} \begin{bmatrix} e^{3t} & -e^{3t} \\ e^t & e^t \end{bmatrix}\\ \arr{Y}^{-1}\vec{g} &= \frac{1}{2}\begin{bmatrix} e^{3t} & -e^{3t} \\ e^t & e^t \end{bmatrix} \begin{bmatrix} 2e^{-t} \\ 3t\end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 2e^{2t} - 3te^{3t} \\ 2 + 3te^t \end{bmatrix}\\ \vec{u}(t) = \int \arr{Y}^{-1}\vec{g} &= \frac{1}{2} \begin{bmatrix} \int 2e^{2t}dt - \int 3te^{3t}dt \\ \int 2 dt + \int 3t e^t dt \end{bmatrix}\\ &=\frac{1}{2} \begin{bmatrix} e^{2t} - (te^{3t} - \frac{1}{3} e^{3t}) \\ 2t + 3(te^t - e^t) \end{bmatrix} \end{align}\]

Then

(443)#\[\begin{align} \vec{y}_P(t) &= \arr{Y}(t)\vec{u}(t)\\ &= \begin{bmatrix} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{bmatrix} \cdot \frac{1}{2} \cdot \begin{bmatrix} e^{2t}-te^{3t} + \frac{1}{3}e^{3t} \\ 2t + 3te^t - 3e^t \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} e^{-t} -t + \frac{1}{3} + 2te^{-t}+ 3t -3 \\ -e^{-t} + t -\frac{1}{3} + 2te^{-t} + 3t - 3 \end{bmatrix}\\ &= \begin{bmatrix} \frac{1}{2} e^{-t} + te^{-t} + t - \frac{4}{3} \\ -\frac{1}{2} e^{-t} + te^{-t} + 2t - \frac{5}{3}\end{bmatrix}\\ \vec{y}_P(t) &= \frac{1}{2}\begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t} + \begin{bmatrix} 1 \\ 1\end{bmatrix} te^{-t} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} t -\frac{1}{3}\begin{bmatrix} 4 \\ 5 \end{bmatrix} \end{align}\]

Then,

(444)#\[\begin{align} \vec{y}(t) &= \vec{y}_H(t) + \vec{y}_P(t)\\ &= c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} + \frac{1}{2}\begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}te^{-t} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} t - \frac{1}{3} \begin{bmatrix} 4 \\ 5 \end{bmatrix} && \text{general solution} \end{align}\]

Numerical solution#

Integrate \(\vec{y}' = \begin{bmatrix}-2 & 1 \\ 1 & -2 \end{bmatrix}\vec{y} + \begin{bmatrix} 2e^{-t} \\ 3t \end{bmatrix}\), with the initial condition \(\vec{y}(t=1)=[4,3]^T\) from t=1 to t=10.

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

A = np.array([[-2, 1],
              [1,-2]])

def linear_nonhomogeneous_diffeq(t, y):
  return A@y + [2*np.exp(-t),
                3*t]

tspan = [1, 10]
y0 = [4, 3]
t_eval = np.linspace(1,10,100)

sol = solve_ivp(linear_nonhomogeneous_diffeq, tspan, y0, t_eval=t_eval)

plt.plot(sol.t, sol.y.T,'o-')
plt.xlabel('Time t')
plt.ylabel('y')
# plt.ylim([-2,2])
Text(0, 0.5, 'y')
../../_images/17-coupled-ode-continued_21_1.png